

CAIE Chemistry IGCSE 3.2 Relative masses of atoms and molecules Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define relative atomic mass (A_r)

Define relative atomic mass (A_r)

The relative atomic mass, Ar, of an element is the average mass of the isotopes of an element compared to 1/12th of the mass of an atom of carbon-12

Give the relative atomic mass (A_r) for chlorine

Give the relative atomic mass (A_r) for chlorine The A_r for chlorine is 35.5

What does the term relative formula mass, M_r, mean?

What does the term relative formula mass mean?

The sum of the relative atomic masses of atoms in a formula unit. Used for giant ionic structures.

Give the relative formula mass for sodium chloride (NaCl)

Give the relative formula mass for sodium chloride (NaCI)

M_r of NaCl: A_r of Na + A_r of Cl

 M_r of NaCI: 23 + 35.5 = 58.5

What does the term relative molecular mass, M_r, mean?

What does the term relative molecular mass mean?

The sum of the relative atomic masses of atoms in a molecule.

Give the relative molecular mass, M_r, of calcium carbonate (CaCO₃)

Give the relative molecular mass, M_r , of calcium carbonate (CaCO₃)

The M_r of CaCO₃: A_r of Ca + A_r of C + (A_r of O x 3) M_r of CaCO₃: 40 + 12 + (16 x 3) = 100

What equation links moles, mass and relative atomic mass?

What equation links moles, mass and relative molecular mass?

Mass (g) = Moles (mol) x Relative molecular mass (M_r)

M

Mr

mol

Calculate the mass of magnesium needed to form 12g of magnesium oxide: 2Mg (s) + O₂(g) -> 2MgO (s)

Calculate the mass of magnesium needed to form 12g of magnesium oxide: $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

- 1. Find the M_r of magnesium: 24
- 2. Find the M_r of magnesium oxide: (A_r of Mg is 24 and A_r of oxygen is 16)
- 3. Find the mol of magnesium oxide: mass of MgO \div Mr of MgO 12 \div 40= 0.3
- 4. The moles of magnesium is also 0.3 since the balancing numbers of Mg and MgO are the same
- Calculate the mass of magnesium: Mr of Mg x mol of Mg 24 x 0.3 =7.2g

